Cost-Sensitive Machine Learning

1st Edition

eISBN-13: 9781439839287

eBook Features

  • Read your book anywhere, on any device, through RedShelf's cloud based eReader.
  • Built-in study tools include highlights, study guides, annotations, definitions, flashcards, and collaboration.
  • The publisher of this book allows a portion of the content to be used offline.
  • The publisher of this book allows a portion of the content to be printed.
  • The publisher of this book allows a portion of the content to be copied and pasted into external tools and documents.
Rent or Buy from $ 23.18
Note: We do not guarantee supplemental material with textbooks (e.g. CD's, Music, DVD's, Access Code, or Lab Manuals)

Additional Book Details

In machine learning applications, practitioners must take into account the cost associated with the algorithm. These costs include:

Cost of acquiring training data
Cost of data annotation/labeling and cleaning
Computational cost for model fitting, validation, and testing
Cost of collecting features/attributes for test data
Cost of user feedback collection
Cost of incorrect prediction/classification

Cost-Sensitive Machine Learning is one of the first books to provide an overview of the current research efforts and problems in this area. It discusses real-world applications that incorporate the cost of learning into the modeling process.

The first part of the book presents the theoretical underpinnings of cost-sensitive machine learning. It describes well-established machine learning approaches for reducing data acquisition costs during training as well as approaches for reducing costs when systems must make predictions for new samples. The second part covers real-world applications that effectively trade off different types of costs. These applications not only use traditional machine learning approaches, but they also incorporate cutting-edge research that advances beyond the constraining assumptions by analyzing the application needs from first principles.

Spurring further research on several open problems, this volume highlights the often implicit assumptions in machine learning techniques that were not fully understood in the past. The book also illustrates the commercial importance of cost-sensitive machine learning through its coverage of the rapid application developments made by leading companies and academic research labs.

Sold By CRC Press
ISBNs 9781439839256, 1439839255, 9781439839287, 143983928X
Language English
Number of Pages 316
Edition 1st